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[1] This study proposes an algorithm for blending multiple satellite precipitation estimates
(SPEs) with in situ gauge precipitation measurements in Canada. Depending on the
number of gauge stations in the target area, the algorithm employs gauge data alone or
blends gauge data with the corresponding SPEs that have been corrected for biases using a
novel bias removal procedure developed in this study. The performance of this
algorithm is evaluated in terms of root‐mean‐square error (RMSE), frequency bias
index, and Pierce skill score, using 10 year gauge data from southwestern Canada
where there are enough valid gauge stations to be split into a training data set and an
evaluation data set. Sensitivity of the algorithm to gauge density is assessed by using five
training data sets representing sparse to moderate gauge densities. The results show that,
in comparison with the SPEs and a kriging analysis of gauge data, the blended
analysis has the smallest RMSE and is least biased and most skillful in all seasons,
and that the lower the gauge density, the more superior the blended analysis is. When
gauge density is low, kriging analysis of gauge data is worse than bias‐corrected SPEs. The
unadjusted SPEs are the worst by all measures considered, which indicate a need for a
proper correction of biases in the SPEs. The blending algorithm is promising for
producing a more realistic gridded precipitation, especially for gauge sparse regions, such
as northern Canada. A blended analysis of monthly precipitation is produced and
compared with several existing precipitation analyses.
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1. Introduction

[2] Precipitation is a key variable for specifying the state of
the climate system. Quantifying the amount of precipitation
and assessing its changes both spatially and temporally are
critically important for the assessment and understanding of
climate change and its impacts on the environment, ecosys-
tem, and human society.
[3] Traditionally, precipitation amount is measured with

precipitation gauges. Gauge measurements provide the most
reliable point observations of precipitation, also with good
representation of the temporal variability of precipitation.
However, precipitation gauge networks are often too sparse
to represent the very high spatial variability of precipitation.
This problem is particularly severe in northern Canada
where two gauge stations are typically 500∼700 km apart
(could be over 1100 km in northern Quebec). The large
geographical gaps in northern Canada make it difficult to
generate a realistic gridded precipitation data set using
gauge precipitation data alone. Gridded precipitation data

sets derived solely from spatial interpolation of gauge mea-
surements suffer greatly from inadequate density of precipi-
tation gauges. Yet, there is an urgent need for a high‐quality
gridded precipitation database that can well represent both the
temporal and spatial variations of precipitation over Canada,
for validating GCM/RCM simulations and for assessing cli-
mate change and its impacts, among many other applications.
[4] Satellite observations of infrared and microwave radi-

ance have been used successfully to retrieve precipitation
information. The satellite based precipitation estimates/data
sets have been attracting more and more attention; they
provide better representation of the precipitation field (the
spatial variability), although they also contain non‐negligible
errors because of the indirect nature of the relationship
between observations and precipitation, and because of the
inadequate sampling and algorithm imperfections. Combin-
ing satellite precipitation estimates that have better spatial
coverage with in situ gauge data that have better temporal
coverage has become the most promising approach to pro-
duce a gridded precipitation data set that can well represent
both the temporal and spatial variations of precipitation over
regions of insufficient gauge density.
[5] Many merging techniques and products of different

time and spatial scales and coverages have been developed
in the past decades. Among them, the product of the Global
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Precipitation Climatology Project (GPCP) [Huffman et al.,
1995, 1997; Adler et al., 2003] and the Climate Prediction
Center (CPC) Merged Analysis of Precipitation (CMAP)
[Xie and Arkin, 1997] have global coverage with a long time
span and are widely recognized. The GPCP combined
precipitation data were developed and computed by the
NASA/Goddard Space Flight Center’s Laboratory for
Atmospheres as a contribution to the GEWEX Global Pre-
cipitation Climatology Project. As stated in Adler et al.
[2003], GPCP is “a merged analysis that incorporates pre-
cipitation estimates from low‐orbit satellite microwave data,
geosynchronous‐orbit satellite infrared data, and surface
rain gauge observations.” GPCP products, which are
available online at http://precip.gsfc.nasa.gov/, include (1)
monthly, 2.5° merged analysis for the period from 1979 to
date [Adler et al., 2003]; (2) pentad (5 d), 2.5° merged
analysis for 1979–present [Xie et al., 2003]; and (3) daily,
1° merged analysis for 1997–present [Huffman et al., 2001].
We use the GPCPmonthly analysis version 2.1 (http://precip.
gsfc.nasa.gov/gpcp_v2.1_comb_new.html) for comparison
later in this study. Similarly, the CMAPmerged data sets also
combine rainfall estimates from a variety of satellite and in
situ data sources, including pentad and monthly analysis of
global precipitation on a 2.5° × 2.5° latitude‐longitude grid
for the period extending back to 1979. In addition, simula-
tions of precipitation from Numerical Weather Prediction
models are also used to fill in gaps at high latitudes in the
enhanced version of the CMAP data set. The CMAP data are
available online at ftp://ftp.cpc.ncep.noaa.gov/precip/cmap.
[6] An intercomparison study [Yin et al., 2004] shows that

the GPCP and CMAP products “are in very good agreement
in describing the large‐scale precipitation spatial patterns
and temporal variations,” though “there are still some sig-
nificant differences between them that appear to be related
to the input data and/or the method of merging the satellite
and gauge data. The most obvious is the differences in the
tropical oceans and the high‐latitude land areas.”
[7] This study proposes an algorithm for producing a

gridded monthly precipitation data set of half‐degree reso-
lution by blending multiple satellite precipitation estimates
with in situ gauge data for Canada. Although the focus of this
study is restricted to Canada (40°N–90°N, 50°W–150°W),
we believe that the algorithm is applicable for producing a
global blended analysis of precipitation with little adjustment.
[8] The remainder of the paper is arranged as follows.

Section 2 gives a brief description and preprocessing pro-
cedure of the data sets used in this study. Section 3 details the
blending algorithm, with an assessment of its performance
presented in section 4. Section 5 compares the resulting
blended analysis with the GPCP and CMAP data sets, and
with the Canadian gridded precipitation (CANGRD) data set,
a Canadian gridded precipitation product. Finally, we present
some concluding remarks in section 6.

2. Data Sets and Preprocessing Procedures

[9] This study focuses on monthly time scale. In addition
to the in situ gauge precipitation data for Canada, two major
types of satellite precipitation estimates (SPEs) are used in
this study. How we preprocess these data sets is described in
the subsections below.

2.1. In Situ Gauge Data and Virtual Observation
Values

[10] The gauge precipitation data used in this study are
monthly mean precipitation totals for 1979–2003, as derived
by Hutchinson et al. [2009] from daily precipitation amounts
(after quality control) in the digital archive of Environment
Canada. The monthly precipitation data include correction
for trace precipitation and distributing an accumulated
amount to each day in the period of accumulation whenever
possible and necessary (e.g., when the period goes from one
calendar month to the next). The data processing and quality
control procedure are detailed by Hutchinson et al. [2009].
Unlike satellite precipitation estimates, which are snapshot
area quantities and are usually expressed as monthly or daily
or subdaily mean precipitation rates, gauge precipitation
measurements are accumulated point quantities (usually
daily amounts recorded at stations). For each station, the
daily amounts in a month are first aggregated to a monthly
total amount, which is then divided by the number of days in
the month to obtain the monthly mean precipitation rate
(unit: mm per day). However, these monthly mean precipi-
tation rates are still point values. We need a gauge precipi-
tation data set that is comparable to the SPEs, with a value
representing the average rate of precipitation over each
designated grid box (which is a 0.5° × 0.5° grid box in this
study). That is, we need to aggregate all the point values
available within a designated grid box, to produce a grid box
average value.
[11] Since the density of gauge stations varies from region

to region, many of the designated 0.5° × 0.5° grid boxes
have no valid gauge station (i.e., station of valid precipita-
tion observation for the month in question) in it. In this
study, a virtual observation grid box/location (VOGB) refers
to a grid box/point for which there is at least one valid gauge
station within the respective grid box. The number of
VOGBs may vary from month to month, depending on the
number and locations of valid gauge stations for the month.
As an example, the map of valid gauge stations for Sep-
tember 2003 is shown in Figure 1a, and the corresponding
VOGBs is shown in Figure 1b.
[12] Having defined the VOGBs, we take the inverse‐dis-

tance‐weighted (IDW) average of all valid gauge data within
a VOGB (or an expended VOGB if necessary, see below) as
the virtual observation value at the VOGB (representing the
VOGB average). If there are less than four valid gauge sta-
tions (note that there is at least one) within the target VOGB,
the IDW average is calculated using up to 12 nearest valid
stations within a 75 km radius from the VOGB center, or
within a 125 km radius if the number of valid stations within
the 75 km radius is still less than four. If the number of valid
stations within the 125 km radius is still less than four, the
IDW average is calculated using the available, less than four
valid stations (could be just one station). Remember that a
0.5° × 0.5° grid box is not a VOGB if there is no valid gauge
station in it.
[13] Following the above procedure, a set of virtual

observation values (denoted as O, with one value for each
VOGB) is produced for each calendar month in the period of
analysis. The number of valid gauge stations used to derive a
virtual observation value varies from location to location
within a month, and from month to month. In July 2003, for
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example, 9.4% of the virtual observation values were derived
using 4∼18 valid gauge stations within the 0.5° × 0.5° grid
box; the majority (85.6%) of them were produced using 1∼3
valid gauge stations within the 0.5° × 0.5° grid box, along
with other stations (up to a total of 12 stations) in the area of
up to 125 km radius from the VOGB center; and 5% of them

were set as the only gauge value within 125 km radius from
the VOGB center (mostly in northern Canada; in this case the
only gauge is also within the VOGB). Since the grid box is
small (0.5° × 0.5°), especially in the north, it is reasonable to
take the single gauge/point value to represent the grid box
average for a small number of VOGBs in northern Canada.

Figure 1. An example map of (a) the stations of gauge precipitation (monthly total) data, (b) the corre-
sponding virtual observation locations (for September 2003), (c, d) the Goddard Profiling Algorithm
(GPROF) coverage for January and August 2000, and (e, f) the Unified Microwave Ocean Retrieval
Algorithm (UMORA) coverage for January and August 2000.

LIN AND WANG: BLENDED ANALYSIS OF PRECIPITATION D21111D21111

3 of 19



Note that single isolated station does not fill all the grid
boxes within the 125 km radius, because a 0.5° × 0.5°grid-
box is not a VOGB if there is no valid gauge station within
this grid box (a VOGB must have at least one gauge station
within the 0.5° × 0.5° grid box) and virtual observation
values are calculated for VOGBs only.
[14] Just like SPEs, the virtual observation values repre-

sent the grid box average precipitation rates. For each
month, we also interpolate the virtual observation values (O)
onto the designated grid by ordinary kriging, obtaining the
virtual observation field K(O) for later use. The data, which
are on a latitude‐longitude grid, were first projected onto an
oblique stereographic coordinate system centered at (110°W,
60°N) before being used in the kriging. Then, we use the
ArcGIS geostatistical analyst to do the kriging with a spher-
ical semivariogram model.

2.2. Satellite Precipitation Estimates

[15] Several data sets of satellite precipitation estimates
(SPEs) exist today, but few have data for high‐latitude areas.
Following works of GPCP, CMAP and Sapiano et al.
[2008], we choose to use the following satellite based pre-
cipitation estimates: Television and Infrared Observation
Satellite Operational Vertical Sounder (TOVS) based pre-
cipitation estimates, Atmospheric Infrared Sounder (AIRS)
based precipitation estimates, and two Special Sensor
Microwave/Image (SSM/I) based precipitation estimates:
Goddard Profiling Algorithm (GPROF) [Kummerow et al.,
2001] and Unified Microwave Ocean Retrieval Algorithm
(UMORA) [Hilburn and Wentz, 2008; Wentz and Spencer,
1998; Wentz, 1997]. The spatial and temporal resolution
and coverage of these data sets are summarized in Table 1.
A brief description of these data sets is given below.
2.2.1. TOVS and AIRS Based Satellite Precipitation
Estimates
[16] The TOVS instruments were operated aboard the

NOAA series of polar orbiting NIMBUS satellites. They
delivered vertical profiles of temperature, humidity and
liquid water content. The TOVS‐based precipitation product
was produced by the Satellite Research Team under the
direction of Joel Susskind, at NASA Goddard Space Flight
Centers Laboratory for Atmospheres. It is available in 1.0°
resolution for the period from 1979 to 2003 by contacting
Joel Susskind.
[17] Data from the TOVS instruments are processed using

a multiple regression relationship between collocated rain
gauge measurements and several TOVS based parameters
that relate to cloud volume, cloud top pressure, fractional
cloud cover and relative humidity profile. The relationships

vary seasonally and latitudinally; separate relationships are
developed for ocean and land (see the work of Susskind
et al. [1997] for more details about the TOVS‐based data
sets).
[18] From 2004 onward, the TOVS data sets are replaced

with AIRS‐based product AIRSX3SPM [Susskind et al.,
2011], which are available by contacting Joel Susskind.
The processing technique of AIRS‐based data follows the
same principal of TOVS‐based data sets.
[19] The TOVS and AIRS data sets together form a con-

tinuous global record of precipitation for the period from
1979 to present, which we use in this study. The TOVS/
AIRS‐based product of SPEs is particularly useful over
regions where in situ measurements are sparse and is one of
the few available sources for the high latitudes.
[20] The TOVS and AIRS precipitation estimates we have

downloaded are on a global 1.0° × 1.0° latitude‐longitude
grid. We interpolated the data to the designated 0.5° × 0.5°
latitude‐longitude grid by inverse‐distance‐weighted aver-
aging of the values at the four nearest grid points, while
keeping the average value for the original 1.0° × 1.0° grid
box unchanged.
2.2.2. SSM/I‐Based Satellite Precipitation Estimates
[21] The SSM/I data are recorded by the polar orbiting

satellites of the Defense Meteorological Satellite Program
(http://www.ncdc.noaa.gov/oa/rsad/ssmi/gridded/). SSM/I is
one of the major instruments used for inferring precipita-
tion from passive microwave signals. The techniques are
usually based on radiative transfer: emission and scattering
estimates. The emission estimation technique directly mea-
sures the emission from hydrometeors in the atmosphere,
which requires a homogeneous background and is therefore
unsuitable over land and coast. The scattering technique is
based on the scattered radiation from ice particles in clouds
and works over any background (ocean or land).
[22] In this study, we use the GPROF SSM/I data, which

are scattering estimates over land and combined scattering/
emission estimates over ocean, and the UMORA SSM/I data,
which are emission estimates only over ocean. A comparison
of the GPROF data set with the UMORA data set can be
found in the work ofHilburn and Wentz [2008]. The GPROF
data set is described in details by Kummerow et al. [2001]
and the UMORA data set by Hilburn and Wentz [2008],
Wentz and Spencer [1998], and Wentz [1997]. We only give
a brief summary of these data sets below.
[23] The GPROF data set was downloaded from the

NASA Goddard Space Flight Center. At the original sub-
daily timings, the data set is on a 0.5° × 0.5° grid for the
following periods: July 1987 to November 1987, January

Table 1. Satellite Precipitation Estimates Used in This Studya

Algorithm Input Data Spatial Scale Time Scale Area Coverage Time Coverage

TOVS HIRS, MSU 1.0° × 1.0° daily/monthly global Jan 1979 to Dec 2004
AIRS AIRS, AMSU 1.0° × 1.0° daily/monthly global Sep 2002 to present
GPROF SSM/I 0.5° × 0.5° orbit segments 70°N–70°S Jul 1987 to present
UMORA SSM/I 0.25° × 0.25° daily/monthly global ocean Jul 1987 to present

aTOVS, Television and Infrared Observation Satellite Operational Vertical Sounder (J. Susskind, personal communication, 2010); HIRS, High‐
Resolution Infrared Radiation Sounder (NOAA); MSU, Microwave Sounding Unit (NOAA); AIRS, Atmospheric Infrared Sounder (Aqua),
AIRX3SPM, AIRS/Aqua Level 3 monthly support physical retrieval product (AIRS + AMSU); AMSU, Advanced Microwave Sounding Unit (Aqua);
GPROF, Goddard Profiling Algorithm version 6.0 (http://rain.atmos.colostate.edu/RAINMAP/gprof_description.html); SSM/I, Special Sensor
Microwave Imager (DMSP); UMORA, Unified Microwave Ocean Retrieval Algorithm (http://www.ssmi.com/).
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1988 to February 1990, and January 1991 to present. These
data are accumulated to produce daily, then monthly, means
on a 0.5° × 0.5° latitude‐longitude grid. Following the
approach of Sapiano et al. [2008], we discarded a monthly
average for which the number of ambiguous pixels exceeds
20%, with ambiguous pixels being defined as pixels that are
possibly contaminated with snow/ice (they are a combina-
tion of channel values which are sometimes associated with
snow/ice [Sapiano et al., 2008]). Though a valuable prod-
uct, GPROF SSM/I based applications have limited spatial
coverage. For precipitation estimates, it is limited to lati-
tudes ranging approximately from 70°N to 70°S in summer,
and from 55°N to 55°S in winter, presumably because of the
disturbance of the precipitation signal by surface snow or ice
cover. Its coverage changes month by month, depending on
the snow/ice coverage. Figures 1c and 1d show an example
of its coverage in winter and summer.
[24] The monthly UMORA data set, downloaded from the

Remote Sensing System, is on a 0.25° × 0.25° latitude‐
longitude grid. We averaged them to the designated 0.5° ×
0.5° latitude‐longitude grid. The data are available only for
ocean areas for the period from July 1987 to present.
[25] Presumably because of contamination by snow/ice,

the SSM/I data contain isolated unrealistically high figures.
For example, in February 2003, within the latitude range of
40°N to 90°N and longitude range of 50°W to 150°W, the
maximum GPROF value is 41.993 mm per day, the maxi-
mum UMORA value is 131.2 mm d−1, but the regional
maximum value calculated from gauge measurements in
Canada is only 7.81 mm d−1. First, we need to remove
unrealistically high values in each month, using a cutoff
value. We tried with different cutoff values: (Gmax + C) with
C = 2, 4, 6, 8, 10 (and also

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

max þ 144
p

), where Gmax is
the regional maximum gauge precipitation (the maximum
value over Canada; unit: mm per day) in that month. We
found that the weights for the SSM/I data (and our results)
are not sensitive to all these choices of cutoff value. Thus,
we chose to use (Gmax + 4), a moderate cutoff value, which
retains all the satellite estimates within a reasonable range.
All SSM/I values that are higher than the corresponding
cutoff value are rejected, i.e., set to missing. The rejection
rate varies from month to month. It is usually below 1%, and
some months have no values rejected. The monthly average
rejection rate over the period 1987–2007 is 0.30% for the
GPROF data set, and 0.32% for the UMORA data set. Note
that the rejection rate calculated this way is usually higher
than what it would be if the regional maximum gauge value
were obtained from the entire region covered by the satellite
data (40°N∼90°N, 150°W∼50°W), rather than just gauge
measurements in Canada. However, this will have little
effect on our blended precipitation product, which will only
cover Canadian region.
[26] The two SSM/I data sets also include occasional 0

monthly mean precipitation rates for an unrealistically high
number of grid points, which are also difficult to process
using our algorithm which involves ratios between the
SPEs and virtual observations values. Thus, we set the min-
imum value in the GPROF and UMORA data sets to a quarter
of the minimum virtual observation value in the precipitation
field for that month, or a quarter of 0.00001 mm d−1 if
the minimum virtual observation value is smaller than
0.00001 mm d−1.

[27] Then, the two SSM/I based data sets, i.e., the GPROF
data set that covers the region from 70°N–70°S and the
UMORA data set that covers global oceans are combined by
simple averaging, producing a single global SSM/I data set
of monthly mean precipitation rates on the designated 0.5° ×
0.5° latitude‐longitude grid for later use in blending. Note
that the UMORA data set has very limited contribution to
this study because of its ocean‐only coverage: It has data for
the Hudson Bay and the Gulf of St. Lawrence areas only in
the ice‐free season (Figures 1e and 1f); besides, it only
serves as sort of boundary conditions for the Canadian
coastal areas.

3. The Blending Algorithm

[28] This section describes an algorithm we propose for
blending multiple satellite precipitation estimates (mSPEs)
with in situ gauge precipitation data for Canada. As detailed
next in the subsections, the algorithm consists of three steps:
(1) Combine the mSPEs into one single data set of SPEs,
obtaining the initial estimates, SPE0, for Canada. (2) Quan-
tify and remove biases in the SPE0 against the corresponding
virtual observations. (3) Blend the bias‐corrected SPEs with
the corresponding virtual observations to produce a blended
analysis of monthly precipitation field.

3.1. Combining Multiple Satellite Precipitation
Estimates

[29] An observational error is defined as the difference
between an observed value and its true value. Let sk

2 denote
the spatial variance of errors (simply referred to as error
variance) in the k‐th data set Dk (for k = 1, 2…, M). The
combination of M data sets that is optimal in terms of error
variance (i.e., has the smallest error variance) is obtained as
follows:

Dc ¼
XM
k¼1

wk*Dkð Þ; whereweightswk ¼ 1=�2kPM
k¼1

1=�2
k

� � ð1Þ

Simply put, the combined value is a weighted average with
weights being inversely proportional to the error variance of
the corresponding data set. Here, an error refers to the dif-
ference between a virtual observation value (obtained using
the procedure described in section 2.1) and an SPE for the
same grid box (a virtual observation grid box).
[30] We use (1) to combine the SSM/I data set and the

TOVS/AIRS data set (both result from the preprocessing
described in section 2.2). However, for each data set, we use
a fixed weight, the 1987–2007 average of the weights for
each calendar month that are estimated using the monthly
error variances of the data set for each month in the period.
Namely, the weight for each calendar month does not change
from year to year; for each data set, we have 12 weights, one
for each calendar month. The error variances were calcu-
lated from the data for the region south of 55°N only,
because most of the SSM/I data are missing in the region
north of 55°N in the cold season and north of 70°N in the
warm season (using all available data gives very similar
results). The resulting weights for the SSM/I data are listed
in Table 2, which range from 0.44 in January to 0.14 in
May; subtracting each of these weights from 1 gives the
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corresponding weight for the TOVS/AIRS data set (because
M = 2 here). We use these weights for all grid points in the
region south of 55°N. For the grid points between 55°N and
70°N, the weights for the SSM/I data are reduced linearly
from the values at 55°N to zero at 70°N, because very few
SSM/I data are available at 55°N and higher latitudes in the
cold season and at 70°N and higher latitudes in the warm
season. When a SSM/I SPE is not available, the “combined”
SPE equals the TOVS/AIRS SPE. The resulting combined
data set is referred to as the initial satellite precipitation
estimates, denoted as SPE0. This data set contains large
systematic biases. Section 3.2 describes how we estimate
and remove these biases.
[31] Table 2 shows that both the SSM/I and TOVS/AIRS

data sets have much larger error variances in winter than in
summer, although the TOVS/AIRS data always have a
smaller error variance than do the SSM/I data for the same
month, regardless of season. However, winter/summer error
variance ratio is much larger for the TOVS/AIRS than for
the SSM/I data; thus, the error variance ratios between SSM/
I and TOVS/AIRS are larger in summer than in winter, and
hence the weights for SSM/I data are smaller in summer
than in winter (Table 2).
[32] For each calendar month, the weights in (1) are

invariant over the region south of 55°N, which is a simplifi-
cation that has room for improvement. The linear reduction of
the weights for SSM/I data from 55°N to 70°N is also a
simplification that might have a little room for improvement
(note that the weights are not used when a SSM/I SPE is not
available; so the effects of the linear reduction should be
small). The error variance of SPEs could change from region
to region, depending on the ground (e.g., canopy and
topography) and precipitation characteristics. We could
divide the analysis region into a few subregions of similar
error variances and derive season‐ and region‐dependent
weights for combining the SPEs (including one or more
subregions between 55°N and 70°N). This will be imple-
mented in a future version of our algorithm.

3.2. Removing Systematic Biases in the SPE0 Fields

[33] Here, a bias refers to the difference between a virtual
observation value and an SPE for the same virtual observa-
tion location. In calculating the error variance of the SPE data
sets, we have noticed large biases in the SPEs, which remain
in the SPE0 data set. For example, the spatial average (over
Canada) of the 10 year (1994–2003) mean precipitation rates
is 2.1783 for the virtual observation fields, but only 1.7698
for the SPE0 fields. In general, the SPE0 data set under-
estimates precipitation amount in the region south of 60°N,
while it overestimates in the region north of 60°N. Note that
the SPE0 for the south is truly a mix of the SSM/I and TOVS/
AIRS data; but for the north it is almost entirely from the

TOVS/AIRS data. It is essential that we remove these sys-
tematic biases prior to any application of this data set. The
bias removal is particularly important for grid boxes with no
gauge data, because in this case the value in the blended
analysis depends mainly on the SPE (see section 3.3).
[34] There are several ways to remove biases in SPEs. For

example, Xie and Xiong [2011] remove biases in daily SPEs
by matching their probability density function (PDF) with
the PDF of the colocated daily gauge analysis, correcting
precipitation‐intensity‐dependent biases on daily time scale.
Adler et al. [2003] use ratios of the spatial mean precipita-
tion rates (averaged over a moving window centered at a
gauge location) between gauge values and SPEs to quantify
the systematic biases in SPEs. In the latter case, the ratio
may vary over time. Sapiano et al. [2008] use noise to signal
variance ratios. Having tried several bias removal proce-
dures (including that of Adler et al. [2003]), we develop the
following bias removal procedure, which turns out to be
most effective (leading to less biased and more skillful
blended analysis).
[35] Similar to the procedure of Adler et al. [2003], we

also use time varying ratios between virtual observation
values and SPEs. For each individual month t in the period
analyzed, we estimate the ratio field Rti (where i is the
designated grid point index) and use it as a multiplication
factor to remove systematic biases in the SPE0 field. That is,
a bias‐corrected SPE field (SPE1) is obtained as:

S1ti ¼ Rti*S
0
ti: ð2Þ

The ratio field Rti is derived in the following three steps:
[36] 1. Calculate the ratio between the virtual observation

value Otj and the SPE0 value Stj
o at each virtual observation

location; namely, Rtj
0 = Otj/Stj

o for month t at virtual obser-
vation location j.
[37] 2. Limit the ratios Rtj

0 within the interval [0.1, 4.0]:

Ra
tj ¼

4:0 if R0
tj � 4:0

R0
tj if 0:1 � R0

tj < 4:0

0:1 if R0
tj < 0:1

8>>>><
>>>>:

ð3Þ

These limits are necessary to avoid the unrealistically high
and low ratios, because ratios are very sensitive to data
errors.
[38] 3. Use ordinary kriging to interpolate the adjusted

ratios Rtj
a to each grid point i on the designated 0.5° × 0.5°

grid, creating the ratio field Rti. This is necessary because
the ratios Rtj

a have values at only the virtual observation
locations (not each grid point on the designated grid).

Table 2. The 1987–2007 Mean Error Variances of the TOVS/AIRS and SSM/I Data Sets, and the 1987–2007 Mean Weights for the
SSM/I Data for Each Calendar Montha

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

TOVS/AIRS 12.04 7.22 4.74 2.60 1.86 1.82 2.10 1.49 2.50 4.16 7.62 6.66
SSM/I 14.65 12.88 9.21 5.53 5.82 6.60 6.77 5.89 4.36 4.96 9.43 10.92
Weights for SSM/I 0.44 0.36 0.32 0.24 0.14 0.16 0.17 0.18 0.29 0.41 0.43 0.39

aNote that a mean weight here is the average of the weights calculated for each month over the period 1987–2007; it would be slightly different if
calculated from the mean error variances.
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[39] Note that large data errors can remain in a SPE1 field,
because of the use of the ratio limits in (3). We can reduce
the effect of large errors by making the SPE1 field smoother.
To this end, we simply average the SPE1 values (on the
0.5° × 0.5° grid) over a circle of 75 km radius centered at
the target grid point, obtaining the SPE2 (we have tried with

50 km, 75 km, and 100 km and found that 75 km works
best, giving an effect grid resolution of about 1.5° latitude
by 2.5° longitude at 55°N latitude). This is the final version
of the bias‐corrected SPEs, which will be used to produce a
blended precipitation analysis. As shown in Figures 2a–2c,
the SPE2 field retains the main spatial pattern of the SPE0

Figure 2. An example of the initial and bias‐corrected satellite precipitation estimates (SPE) fields, in
comparison with the virtual observation field (from ordinary kriging), the blended analysis Canadian
Blended Precipitation version 0 (CanBPv0), Climate Prediction Center (CPC) Merged Analysis of Precip-
itation (CMAP), and Global Precipitation Climatology Project (GPCP) (for September 2003). Note that
the Canadian waters (e.g., the Hudson Bay) are masked off in these plots, but they are included in the
output of the blended analysis.
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field, but quantitatively closer to the corresponding virtual
observation field K(O). The bias‐correction procedure
actually anchors the major pattern of the SPE field to the
gauge observation values, which is what we desire.
[40] It is worth pointing out that we have also tried with a

bias correction algorithm similar to what was used to pro-
duce the GPCP data set by Adler et al. [2003]. We tried the
GPCP bias correction procedure with some modifications.
For example, instead of using a moving window that con-
sists of a fixed number of latitude‐longitude grid boxes (thus
its size reduces as the latitude increases), we use a moving
circle (of 125 km radius) whose area is basically latitude
invariant. This is particularly important for Canada, because
of its large latitude range and its very low gauge density in the
north. The results (not shown) are not as good as the results
obtained from using the bias correction procedure described
above, in terms of the bias and skill measures discussed later
in section 4.

3.3. Blending Satellite Precipitation Estimates With
Virtual Observations

[41] This section describes the final step to blend the bias‐
corrected SPEs, i.e., the SPE2 data set obtained in section 3.2,
with the corresponding virtual observation field K(O) (see
section 2.1), to obtain a blended analysis of precipitation. The
algorithm is inspired by the conditional merging by kriging
[Sinclair and Pegram, 2005].
[42] Let B denote the blended analysis. The gist of the

blending algorithm can be expressed as:

B ¼ �*K Oð Þ þ 1� �ð Þ* S þ K O� SVOLð Þ½ �;

with� ¼ 1 if m � 8

m=8 if m < 8

�
ð4Þ

where S denotes the SPE2 values on the whole designated
0.5° × 0.5° grid, SVOL denotes the S values at virtual
observation locations, K(O − SVOL) denotes the residual field
(detailed below), and m is the number of valid gauge sta-
tions within 75 km radius from the target grid point. The
residual field K(O − SVOL) is obtained by interpolating,
through ordinary kriging, the differences between the SPE2
values at the virtual observation locations, SVOL, and the
corresponding virtual observation values, O, onto the des-
ignated 0.5° × 0.5° grid. When l = 0 (which is true for all
designated grid points that have no valid gauge station
within 75 km radius), the blended analysis B = [S + K(O −
SVOL)], which is, in a loose sense, a statistical interpolation

of the virtual observations (O) that uses the corresponding
satellite estimates (S) as the background field. When l = 1,
i.e., when there are eight or more valid gauge stations within
75 km radius from the target grid point, B = K(O); the term
[S + K(O − SVOL)] and hence the satellite estimates (S) are
not used; the blended value is obtained from the gauge data
alone by kriging. When 0 < l < 1, the blended analysis is a

combination of the kriging and the statistical interpolation.
Note that setting the weighting coefficients to be inversely
proportional to the error variance of the individual input
fields would help reduce the error variance. However, the
error variance of the individual input fields has been
implicitly used in the bias correction process using (2).
Thus, l is simply set to be a linear function of number of
gauges inside the target grid box.
[43] Our blending algorithm involves kriging. An accurate

definition of error structure of the input fields involved is
critical for success of kriging. However, we do not define
the error structure of the input fields directly. Our approach
is to evaluate indirectly the performance of kriging through
rigorous evaluation of the performance of our blending
algorithm, as detailed in section 4 below. The results indi-
cate that our algorithm has satisfactory performance (see
section 4).
[44] Xie and Arkin [1995] point out that at least five

gauges are needed (in the region they studied) to compute a
2.5° × 2.5° grid box average of monthly rainfall with a
relative root mean square error of 10% or less. In this study,
we calculate 0.5° × 0.5° grid box averages of monthly mean
precipitation rates using all gauge stations within 75 km
radius from the target grid point; and the blended value
equals the K(O) value (kriging analysis of gauge data) if
there are 8 or more stations within the 75 km radius. The
threshold number 8 is chosen after trying with a range (4 to
16) of trial threshold numbers of stations. We find that it is
unnecessary (and better not) to use the satellite estimates
(which are generally of lower accuracy) when there is suf-
ficient number of valid gauge stations within 75 km radius
of the target grid point to represent the grid box average, and
that 8 appears to be the best choice for the data analyzed in
this study. Notice that the grid box averages are calculated
by kriging, not by simply averaging all gauge data within
the grid box. Thus, stations outside the grid box also play a
significant role.
[45] Note that formula (4) involves addition and subtrac-

tion. It could generate negative values, which are nonsense
for precipitation amount. To avoid negative values in the
resulting blended analysis, we replace the term [S + K(O −
SVOL)], which might be negative, with the following term:

min S þ K O� SVOLð Þ; 4*Sð Þ if K O� SVOLð Þ � 0

max S þ K O� SVOLð Þ; 0:5*Sð Þ if K O� SVOLð Þ < 0

8<
: : ð5Þ

Thus, the blended analysis is eventually obtained as

The 4 and 0.5 in (5) and (6) are empirical numbers that were
determined by trial and error method: the 4 was chosen from
trial values of 2, 3, 4, 5, and 6, and the 0.5, from trial values
of 0.1, 0.25, and 0.5; all these trials have similar results,
because these parameters are used only in a very small
number of cases. In a loose sense, the second term in (6) can
still be regarded as a statistical interpolation of the virtual

B ¼
�*K Oð Þ þ 1� �ð Þ*min S þ K O� SVOLð Þ; 4*S½ � if K O� SVOLð Þ � 0

�*K Oð Þ þ 1� �ð Þ*max S þ K O� SVOLð Þ; 0:5*S½ � if K O� SVOLð Þ < 0

8<
: ð6Þ
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observations O with the corresponding satellite estimates S
as the background field.
[46] The blending algorithm, as formulated in (6), is used

to produce a blended precipitation data set for Canada,
which is compared with other existing precipitation analysis
in section 5. Its performance is assessed in section 4.

4. Evaluation of the Algorithm

[47] In order to assess the performance of the blending
algorithm formulated in (6), we need to have two non-
overlapping data sets. One is referred to as a training set,
which is to be used to correct biases in the SPEs and to be
blended with the bias‐corrected SPEs to obtain a blended
analysis. The other is referred to as an evaluation set, which
is to be used to represent the true precipitation field against
which to validate the blended and kriging analyses as well
as the bias‐corrected SPEs. We need a gauge network that
has sufficient gauge stations for splitting into a training set
and an evaluation set. The gauge network in southwestern
Canada (48°N–62°N, 90°W–140°W) for the period 1994–
2003 can serve for this purpose. For the 10 year period from
1994 to 2003, the total number of gauge stations in this test
region ranges from 873 to 1258, though most of the gauge
stations are still located in its south part (e.g., Figure 1a).
Also, the number of stations with valid precipitation data is
always smaller in winter than in summer.
[48] In order to assess the sensitivity of the blending

algorithm to the density of gauge stations, we form five
training sets, which consist of 125, 100, 70, 40, and 20 sta-
tions, respectively. Each smaller training set is a subset of the
larger training set on the next level. The training sets are
chosen carefully so that they have valid data for each and
every month in the 10 year period (1994–2003) and they have
a relatively even coverage over the test region (Figures 3a, 3c,
and 3e). In other words, the five training sets remain the same
for each month in the 10 year period. For each training set, all
stations that are not included in the training set and have valid
data for the month in question form the evaluation set for
that month. Thus, the smaller the training set, the bigger the
evaluation data set (see Figures 3b, 3d, and 3f); also, while
the training set of stations does not change over time, the
stations for evaluation often varies from month to month
because the total number of valid stations often varies from
month to month. The gauge density of the smallest training
set, shown in Figure 3a, is similar to the gauge density in
northern Canada (north of 60°N). Note that the evaluation
set is always much larger than the training set; i.e., the true
precipitation field is well represented, while the blended
analysis is produced using a very limited number of gauge
data. In other words, the evaluation settings are strict for
the blending algorithm; they have good representation of
the hardest situation in northern Canada, but they are
much harder than the reality in southern Canada (even the
125 station training set has a much lower gauge density than
the one existing in southern Canada).
[49] For each month, both the training set and the evalu-

ation set of observations are aggregated to the designated
0.5° × 0.5° grid points in the test region, using the procedure
detailed in section 2.1. The resulting virtual observations of
the training set are used to correct biases in the corre-
sponding SPEs and are then blended with the bias‐corrected

SPEs to produce a blended analysis for the month in ques-
tion. This blended analysis is then evaluated against the
virtual observations of the evaluation data set for that month,
at the virtual observation locations of the evaluation data set.
[50] The following measures of performance are used in

this section: mean error (ME), root‐mean‐square error
(RMSE), pattern correlation score (PCS), frequency bias
index (FBI), and Pierce skill score (PSS). The definitions of
these measures are described in the Appendix. The PSS,
also known as the true skill score, usually has a value
between 0 and 1 inclusive; it is truly equitable, while the
commonly used equitable threat score is not equitable
[Hogan et al., 2010]. The higher the PSS value, the higher
skill the forecast/analysis has. For an unbiased forecast the
FBI value is 1; and an FBI value greater (smaller) than unity
indicates that the forecast/analysis overestimates (under-
estimates) the quantity in question. We also define a measure
of the mean FBI bias as the standard deviation from unity of
the FBI values, i.e., the FBIstd in the Appendix.
[51] The 10 year (1994–2003) mean values of the MEs,

RMSEs, and PCSs of the blended analysis based on each of
the five training sets, and of the corresponding initial SPEs
(SPE0), the bias‐corrected SPEs (SPE1), the bias‐corrected
smoothed SPEs (SPE2), and the kriging result of the virtual
observations of the training set, are reported in Table 3. For
the blended analyses that are based on the 20 and 100 station
training sets, the box‐and‐whisker plots of the MEs are
shown in Figure 4, and the time series of the RMSEs in
Figure 5.
[52] As shown in Table 3, the SPE2 is much better than

the SPE0 by all measures: its MEs are only about 42%∼1%
of the MEs of the SPE0 (in absolute values), and its RMSEs,
about 81%∼66%; it also has a much better pattern correla-
tion with the evaluation data set. Also, it is important to
point out that in terms of RMSEs and PCSs (Table 3), the
SPE2 fields are superior to the SPE1 fields, and also supe-
rior to the kriging analysis when the gauge density is low to
moderate, like the five training sets analyzed in this study.
All these suggest that our bias correction procedure is nec-
essary and successful.
[53] The SPE0 data set has the largest MEs in absolute

value among the four data sets in comparison, showing a
negative bias for all training data sets (Table 3 and Figure 4).
It also has much larger RMSEs than the other data sets,
especially when the training set is larger (Table 3; because
biases in the SPEs can be better corrected when more gauge
data are available for estimating the biases). Actually, the
SPE0 is the worst among the five data sets by all measures
(see Table 3) and hence will not be discussed further
hereafter.
[54] The blended analysis is generally better than the

kriging analysis, especially when the gauge density is low
(Table 3). When the gauge density is low (like the 40 station
set or lower), both the SPE2 and the blended analysis are
better than the kriging analysis (Table 3 and Figure 5a).
Overall, the blended analysis is the best among the five data
sets (Table 3 and Figure 4); it has the smallest RMSEs for
the majority of the 120 months in the test period (Figure 5)
and the highest PCSs with the evaluation data set.
[55] To further evaluate the algorithm, for each of the four

seasons, the 10 year (1994–2003) mean values of the FBI
and PSS are shown as a function of the threshold q in
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Figure 3. (a, c, e) Three training sets of stations used in this study (the 40 and 125 station training sets
are not shown) and (b, d, f) the corresponding evaluation sets for September 2003. The numbers in paren-
theses are the gauge station density of the training set in question.
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Figures 6 and 7 for the blended analyses that are based on
the 20 and 100 station training sets, in comparison with the
corresponding kriging analysis and SPE2. The seasons are
defined as follows: spring (March–May), summer (June–
August), autumn (September–November), and winter
(December–February). The 10 year average values of FBIstd
for each of the four seasons are reported in Table 4.
[56] The results in Table 4 and Figure 6 indicate that,

overall, the blended analysis is least biased in all four seasons

among the three data sets; and the kriging analysis is most
biased. The FBIstd values of the blended analysis are about
44% to 102% (or 79% on average; exceeding 96% only in
the 40 station training set in summer) of their SPE2’s
counterpart, and about 29% to 81% (or 59% on average) of
those of the kriging analysis (Table 4). The frequency bias
decreases notably as the gauge density increases from the
40 station set to the 70 station set (Figure 6 and Table 4).
It is smaller in the cold season than in the warm season
(largest in summer, smallest in autumn; Table 4).
[57] Figure 6 also shows that all three data sets tend to

overestimate the lower quantiles but underestimate the
higher quantiles of precipitation in each season (e.g.,
underestimate summer precipitation when precipitation rates
are greater than 2.0 mm d−1). The smaller the training data
set (i.e., the lower the gauge density), the more severe are
the overestimates and underestimates (Figure 6). The FBI
range corresponding to the 20 station training set is about
three times as wide as that of the 100 station training set in
winter (Figure 6). For the 100 station training set (the gauge
density is about 30 stations per 106 km2), the biases are very
small for the entire range of precipitation rate in autumn and
winter (Figures 6g and 6h).
[58] As shown in Figure 7, the blended analysis is most

skillful among the three data sets, with the skill improve-
ment for the whole range of precipitation rates (i.e.,
threshold values q). Note that all the three data sets are more
skillful for moderate precipitation than for small or large
precipitation (each curve in Figure 7 drops at both ends).
The skill increases as the gauge density increases (compare
left and right panels in Figure 7). When the gauge density is
very low (like the 20 station set), the kriging analysis is the
worst, notably worse than the SPE2 (Figures 7a–7d). For
moderate gauge density (like the 100 station set), the kriging
analysis is still not better than the SPE2 (Figure 7e–7h).
[59] We notice that the algorithm performs better in the

cold season than in the warm season. That is something we
would like to further investigate and improve.

Table 3. Ten Year, 1994–2003, Mean Values of the MEs,
RMSEs, and PCSs of the SPE0, the SPE1, the SPE2, the Kriging
of the Virtual Observations of the Training Sets, and the Blended
Analysis Based on Each of the Five Training Setsa

Stations

20 40 70 100 125

Mean precipitation
rates (mm d−1)

1.975342 1.743527 1.873111 1.843574 1.863117

10 Year Mean MEs (mm d−1)
SPE0 −0.3033 −0.302 −0.2979 −0.3048 −0.3038
SPE1 0.0207 −0.1021 0.0748 0.0173 0.0338
SPE2 0.0257 −0.0991 0.0848 0.0288 0.0443
Kriging 0.0855 −0.147 −0.0169 −0.0591 −0.0437
Blended 0.0161 −0.1283 0.0414 −0.0082 −0.0028

10 Year Mean RMSEs (mm d−1)
SPE0 1.5814 1.5881 1.5891 1.6076 1.6078
SPE1 1.3652 1.3631 1.2870 1.2142 1.2154
SPE2 1.2787 1.2855 1.1583 1.1061 1.0838
Kriging 1.5192 1.4614 1.2171 1.1057 1.0859
Blended 1.2788 1.2533 1.152 1.0711 1.0678

10 Year Mean PCSs
SPE0 0.7061 0.7065 0.7039 0.7047 0.7055
SPE1 0.7372 0.7481 0.7860 0.8041 0.8128
SPE2 0.7716 0.7814 0.8159 0.8321 0.8401
Kriging 0.6707 0.7292 0.8014 0.836 0.8417
Blended 0.7666 0.7848 0.8198 0.841 0.8458

aIn order to help judge the relative importance of MEs and RMSEs, the
regional means of the 10 year mean precipitation rates of the evaluation
data set (observations) are also listed in the second row.

Figure 4. The box‐and‐whisker plots of the mean errors (mm d−1) in the blended analysis based on
(a) the 20 station training set and (b) the 100 station training set. Here, the errors refer to the differences
between the blended analysis values and the corresponding virtual observation values of the evaluation set;
the mean refers to the average over all virtual observation locations of the evaluation set. The evaluation
period is 1994–2003 (10 years).
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[60] It is important to stress that, for each month, the data
in the evaluation set are not included in the training set;
namely, the evaluation data set is independent from the
training data set. The evaluation data set was not used in any
way to produce the SPE2, or the blended analysis, or the
kriging analysis being evaluated in this section.
[61] In summary, the blended analysis is least biased and

most skillful in presenting the spatial patterns of precipita-

tion. It is better than either the bias‐corrected SPEs or the
kriging of available observations alone, although it still
tends to underestimate larger precipitation and overestimate
smaller precipitation in each season (i.e., underestimate the
width of the distribution of precipitation amount). The
unadjusted SPEs contain large biases and should not be used
without a proper correction for the biases. The benefit of

Figure 5. The time series of root‐mean‐square errors (RMSEs) for (a) the 20 station training set and the
(b) 100 station training set. The evaluation period is 1994–2003 (10 years).
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Figure 6. The 10 year (1994–2003) mean frequency bias indices for each of the four seasons, for (a–d)
the 20 station training set and (e–h) the 100 station training set.
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Figure 7. The 10 year (1994–2003) mean Pierce skill scores for each of the four seasons for (a–d) the
20 station training set and (e–h) the 100 station training set.
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combining bias‐corrected SPEs with gauge data to produce
a blended analysis of precipitation is clearly not negligible.

5. Comparison With Other Precipitation
Analyses

[62] In this section, we compare our blended precipita-
tion analysis, denoted as CanBPv0 (Canadian Blended
Precipitation version 0), with three existing gridded pre-
cipitation products: Canadian gridded precipitation data set
((CANGRD), from Environment Canada (E. Milewska and
R. Whitewood, Tools for monitoring areal trends in
Canada, submitted to Atmosphere‐Ocean, 2011), the GPCP
monthly analysis version 2.1 (http://precip.gsfc.nasa.gov/
gpcp_v2.1_comb_new.html), the CMAP monthly analysis
(rain‐1 [Xie and Arkin, 1996, 1997]). The period for
comparison is 1994–2003.
[63] The CanBPv0 data set is based on all available gauge

data in Canada for each target month; it is on a 0.5° × 0.5°
latitude‐longitude grid over Canada. The CANGRD data set
is based on gauge monthly precipitation data for 400+ long‐
term stations, which have been adjusted for wetting losses,
gauge under catch, and station joining [Mekis and Hogg,
1999; Milewiska and Whitewood, submitted manuscript,
2011]; it is on an oblique stereographic projection grid
system with 50 km spatial resolution. Both the GPCP and
CMAP data sets are products from merging gauge data with
multiple SPEs; they are on a 2.5° × 2.5° latitude‐longitude
grid. Numerical weather prediction model simulations of
precipitation are also used in the CMAP rain‐1 data set [Xie
and Arkin, 1996, 1997]. For comparison purpose, the
CanBPv0 and CANGRD data sets were first converted to
the 2.5° × 2.5° latitude‐longitude grid of the GPCP and
CMAP data sets for the Canadian region (40°N∼90°N,
150°W∼50°W), shown in Figure 8.

[64] The comparison is done on locations where all the
four data sets have valid values, in terms of the regional
average and standard deviation, as well as the pattern cor-
relation score (PCS) between the CanBPv0 analysis and the
other data sets. The comparison was done for southern and
northern Canada (south and north of 60°N), separately. The
10 year mean values of the regional average, standard
deviation (SD), and PCS are reported in Table 5.
[65] The box‐and‐whisker plots of the regional averages

and spatial standard deviations of monthly mean precipita-
tion rates are shown in Figure 9, for southern and northern
Canada separately. In southern Canada, CanBPv0 is closest
to GPCP in terms of both the regional means and spatial
variability, while CANGRD and CMAP data sets have
smaller regional means and slightly lower spatial variability
in comparison with CanBPv0 and GPCP (Table 5 and
Figures 9a and 9c). CanBPv0 has the highest spatial vari-
ability among all four data sets (Table 5). In northern
Canada, CanBPv0 is closest to CANGRD in terms of both
regional mean and spatial variability, while GPCP and
CMAP data sets have greater regional means and higher
spatial variability than the other data sets.

Figure 8. The 2.5° × 2.5° latitude‐longitude grid points at
which the blended analysis is compared with the GPCP,
CMAP, and Canadian gridded precipitation (CANGRD)
data sets.

Table 4. Ten Year, 1994–2003, Average Values of the Root‐
Mean‐Square of FBI Biases, i.e., the FBIstd Defined in Appendix
A, of the Blended Analysis Based on Each of the Five Training
Sets, and of the Corresponding SPE2 and the Kriging of the Virtual
Observations of the Training Sets

Stations

20 40 70 100 125

Spring
SPE2 0.4459 0.5187 0.1842 0.2772 0.2143
Kriging 0.4808 0.5986 0.2477 0.2917 0.2283
Blended 0.3898 0.4386 0.1334 0.2123 0.1593

Summer
SPE2 0.481 0.4135 0.342 0.336 0.3601
Kriging 0.6282 0.6172 0.4734 0.4654 0.4446
Blended 0.4537 0.4231 0.285 0.2908 0.3057

Autumn
SPE2 0.2224 0.1934 0.076 0.0908 0.081
Kriging 0.3221 0.291 0.1279 0.148 0.1227
Blended 0.1926 0.129 0.0654 0.0519 0.036

Winter
SPE2 0.2776 0.2599 0.111 0.0782 0.0797
Kriging 0.4221 0.3461 0.1547 0.1355 0.1064
Blended 0.2656 0.2124 0.0719 0.058 0.0676

Table 5. Ten Year, 1994–2003, Mean Values of the Regional
Average and Standard Deviation of the Five Data Sets in Compar-
ison, and of the Pattern Correlation Score Between the CanBPv0
Analysis and the Other Four Data Setsa

CanBPv0 GPCP CMAP CANGRD

Southern Canada
Average 2.3486 2.3612 2.0603 2.2216
SD 1.7715 1.7026 1.4272 1.5893
PCS 1.0000 0.8613 0.7977 0.8939

Northern Canada
Average 0.6641 0.8392 0.7478 0.6410
SD 0.4582 0.6732 0.6190 0.3992
PCS 1.0000 0.6309 0.4479 0.6738

aSee section 5. SD, standard deviation.
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[66] Time series of pattern correlation scores between
CanBPv0 and the other three data sets (GPCP, CMAP, and
CANGRD) are shown in Figure 10 for northern and southern
Canada, separately. Figures 2d–2f show an example of the
blended analysis (for September 2003), as well as the cor-
responding CMAP and GPCP analysis.
[67] In terms of PCS, CanBPv0 is best correlated with

CANGRD, second best with GPCP, in both southern and
northern Canada (Table 5 and Figure 10). The CMAP data set
has much lower PCSs with CanBPv0, especially in northern
Canada, which should be expected since TOVS‐based esti-
mates are not included in the CMAP data set. In general,
the correlations are higher in southern Canada than in
northern Canada (Figure 10 and Table 5). This is because
there are much more gauge data available in southern Canada
and hence more gauge data have been “shared” by the four
precipitation products in comparison.
[68] In summary, the CanBPv0 analysis is more compa-

rable to the CANGRD and GPCP data sets than to the
CMAP data set, both in southern and northern Canada. The
relatively lower precipitation amount in the CMAP data set

is due to the fact that the CMAP data set does not include
wind under‐catch correction while the other data sets do.

6. Concluding Remarks

[69] We have developed an algorithm for blending mul-
tiple satellite precipitation estimates (SPEs) with in situ
gauge precipitation measurements in Canada. The algorithm
employs gauge data alone when there are at least eight valid
gauge data within 75 km radius from the target grid point;
otherwise, it blends the available gauge data with the SPEs
that have been corrected for systematic biases, where the
biases were estimated using a newly developed bias cor-
rection procedure and the corresponding gauge data.
[70] We have assessed the performance of this algorithm

in terms of RMSE, frequency bias index, and Pierce skill
score, using gauge data from Southwestern Canada where
there are enough valid gauge stations to be split into a
training data set and an evaluation data set. We have also
assessed the sensitivity of the algorithm to gauge density by
using five training data sets that represent sparse to moderate
gauge densities. The validation results show that, in com-

Figure 9. (a, b) The box‐and‐whisker plots of the regional averages and (c, d) spatial standard devia-
tions (SDs) of monthly mean precipitation rate (mm d−1) for southern Canada (Figures 9a and 9c) and
northern Canada (Figures 9b and 9d), as derived from the four data sets. The period for comparison is
1994–2003 (10 years).
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parison with the SPEs and a kriging analysis of gauge data
alone, the blended analysis CanBPv0 has the smallest RMSE
and is least biased and most skillful in representing the
spatial pattern of precipitation in all seasons, and that the
lower the gauge density, the more superior is the blended
analysis. When gauge density is low, kriging analysis is
worse than bias‐corrected SPEs alone. The unadjusted SPEs
are the worst by all measures of performance used, which
indicate a need for a proper correction of biases in the SPEs.
The blending algorithm is a promising algorithm for pro-
ducing a more realistic gridded precipitation, especially for
gauge sparse regions, such as northern Canada.
[71] Ordinary kriging analysis is heavily used in our

algorithm. Ordinary kriging is a method that is often asso-
ciated with acronym BLUE for “Best Linear Unbiased
Estimator.” It is “linear” in the sense that the estimates are
weighted linear combinations of the available data; it is
“unbiased” in the sense that it tries to have the mean of
prediction error equal to zero; it is “best” in the sense that it

aims at minimizing the variance of the prediction errors.
Kriging is a highly regarded interpolation technique in many
fields. In a recent comparison study for six interpolation
methods for climate data [Hofstra et al., 2008], kriging is
selected as the best performing method overall.
[72] Kriging alone is not perfect. Generally speaking,

kriging is the BLUE when the data are normally distributed
(Gaussian). When the data are not normally distributed, it is
still the best linear predictor, but there may very well be
better nonlinear predictors that give a much better result.
Precipitation data is generally not normally distributed.
Transformations (e.g., logarithm or Box Cox transforma-
tion) are commonly used to bring the data closer to normal.
In mountainous areas, ordinary kriging of the actual gauge
value is often not desirable. However, if we could detrend
(deseasonalize) the data (when a reasonable trend is pres-
ent), the residuals are usually much closer to normal than are
the original gauge data. That is one of the reasons that
kriging usually performs better on a residual field than on

Figure 10. Time series of pattern correlation score (PCS) between the CanBPv0 and the GPCP, CMAP,
and CANGRD data set for (a) northern Canada and (b) southern Canada. The time is shown as year/
month.
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the corresponding original field [Chen et al., 2002]. One of
our ongoing projects is to estimate monthly mean precipi-
tation rates in mountainous areas using gauge data and
Digital Elevation Model, which we will report in a separate
study. We will try to improve our kriging analysis by
accounting for geographic complexity, especially in moun-
tainous area in the next version of this product by integrating
these two projects.
[73] We are now also in the process of preparing a more

accurate, more complete data set of gauge precipitation
measurements in Canada, by investigating various flagged
values, correcting for wetting losses and gauge under catch,
accounting for trace precipitation (which accounts for a
large portion of annual precipitation in high‐latitude regions
and hence is very important for Canada), etc.. We plan to
use the algorithm developed in this study along with a more
accurate gauge data set for a longer period (including the
after 2003 period) to produce a new version of blended
monthly precipitation analysis for Canada in the near future.

Appendix A: Performance Measures

[74] Let O = {o1, o2, … om} denote the observation set,
F = {f1, f2, …, fm} denote the forecast (analysis) set, where
m is the number of locations with observation and forecast.
Further, let o and f be the spatial mean of O and F,
respectively. The mean error (ME) and the root‐mean‐
square error (RMSE) of the forecast are defined respec-
tively as

ME ¼ 1

m

Xm
k¼1

ok � fkð Þ ðA1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
k¼1

ok � fkð Þ2
s

ðA2Þ

The pattern correlation score (PCS) between F and O is
defined as:

PCS ¼
Pm
k¼1

ok � oð Þ fk � f
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1

ok � oð Þ2Pm
k¼1

fk � f
� �2s : ðA3Þ

[75] To assess objectively the skill of a sequence of n Yes/
No forecasts (e.g., the precipitation rate is not less than q mm
per day), we first obtain a contingency table (see Table A1).
Here, the sum of the counts of hits, false alarms, misses, and
correct negatives is equal to the total number of forecasts:
a + b + c + d = n. Then, the Pierce skill score (PSS) and

the frequency bias index (FBI) for the forecast of whether
or not the forecast ≥ q are defined respectively as:

PSS qð Þ ¼ a

aþ c
� b

bþ d
ðA4Þ

FBI qð Þ ¼ aþ b

aþ c
ðA5Þ

The PSS is also known as the true skill score and is truly
equitable [Hogan et al., 2010]. The higher the PSS value, the
higher skill the forecast has. For an unbiased forecast the FBI
value is 1; and an FBI value greater (smaller) than unity
indicates that the forecast overestimates (underestimates) the
quantity in question. Since the FBI is a function of the
threshold q, we also define the following as a measure of
the mean FBI bias:

FBIstd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mq

Xmq

j¼1

FBI qj
� �� 1

� �2vuut ðA6Þ

where mq is the number of thresholds used in the
evaluation.
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